Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.
نویسندگان
چکیده
Transport of Cryptosporidium parvum through macroporous soils is poorly understood yet critical for assessing the risk of groundwater contamination. We developed a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soilboxes during and immediately after a simulated rainfall event and applied it to 54 experiments implemented with different soils, slopes, and rainfall rates. Using a parsimonious inverse modeling procedure, we show that a significant amount of subsurface outflow from the soilboxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. Using linear mixed-effects analysis, macropore hydraulic properties and oocyst attenuation were shown to be associated with soil bulk density and rainfall rate. Macropore flow was shown to be responsible for bromide and C. parvum transport through the soil into the underlying pore space observed during the 4-h experiments. We confirmed this finding by conducting a pair of saturated soil column studies under homogeneously repacked conditions with no macropores in which no C. parvum transport was observed in the effluent. The linear mixed-effects and logistic regression models developed from the soilbox experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total shallow subsurface flow rate. The risk assessment is consistent with the reported occurrence of oocysts in springs or groundwater from fractured or karstic rocks protected only by shallow overlying soils.
منابع مشابه
Transport of Cryptosporidium parvum oocysts through vegetated buffer strips and estimated filtration efficiency.
Vegetated buffer strips were evaluated for their ability to remove waterborne Cryptosporidium parvum from surface and shallow subsurface flow during simulated rainfall rates of 15 or 40 mm/h for 4 h. Log(10) reductions for spiked C. parvum oocysts ranged from 1.0 to 3.1 per m of vegetated buffer, with buffers set at 5 to 20% slope, 85 to 99% fescue cover, soil textures of either silty clay (19:...
متن کاملOverland and near-surface transport of Cryptosporidium parvum from vegetated and nonvegetated surfaces.
Understanding microbial pathogen transport patterns in overland flow is important for developing best management practices for limiting microbial transport to water resources. Knowledge about the effectiveness of vegetative filter strips (VFS) to reduce pathogen transport from livestock confinement areas is limited. In this study, overland and near-surface transport of Cryptosporidium parvum ha...
متن کاملDispersion and transport of Cryptosporidium Oocysts from fecal pats under simulated rainfall events.
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h(-1) for 30 min and 25 mm h(-1) for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 10(7) oocysts. The soil plots were divided in two, with one side de...
متن کاملEfficacy of vegetated buffer strips for retaining Cryptosporidium parvum.
Overland and shallow subsurface hydrologic transport of pathogenic Cryptosporidium parvum oocysts from cattle feces into surface drinking water supplies is a major concern on annual grasslands in California's central and southern Sierra Nevada foothills. Soil boxes (0.5 m wide x 1.1 m long x 0.3 m deep) were used to evaluate the ability of grass vegetated buffer strips to retain 2 x 10(8) spike...
متن کاملTransport and retention of Cryptosporidium parvum oocysts in sandy soils.
A series of miscible-displacement experiments was conducted to examine the retention and transport behavior of oocysts in natural porous media. Three soils and a model sand were used that differed in physical and geochemical properties. Transport behavior was examined under various treatment conditions to help evaluate retention mechanisms. Significant retention of oocysts was observed for al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental quality
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2008